Bayesian segmentation of brainstem structures in MRI
نویسندگان
چکیده
In this paper we present a method to segment four brainstem structures (midbrain, pons, medulla oblongata and superior cerebellar peduncle) from 3D brain MRI scans. The segmentation method relies on a probabilistic atlas of the brainstem and its neighboring brain structures. To build the atlas, we combined a dataset of 39 scans with already existing manual delineations of the whole brainstem and a dataset of 10 scans in which the brainstem structures were manually labeled with a protocol that was specifically designed for this study. The resulting atlas can be used in a Bayesian framework to segment the brainstem structures in novel scans. Thanks to the generative nature of the scheme, the segmentation method is robust to changes in MRI contrast or acquisition hardware. Using cross validation, we show that the algorithm can segment the structures in previously unseen T1 and FLAIR scans with great accuracy (mean error under 1mm) and robustness (no failures in 383 scans including 168 AD cases). We also indirectly evaluate the algorithm with a experiment in which we study the atrophy of the brainstem in aging. The results show that, when used simultaneously, the volumes of the midbrain, pons and medulla are significantly more predictive of age than the volume of the entire brainstem, estimated as their sum. The results also demonstrate that the method can detect atrophy patterns in the brainstem structures that have been previously described in the literature. Finally, we demonstrate that the proposed algorithm is able to detect differential effects of AD on the brainstem structures. The method will be implemented as part of the popular neuroimaging package FreeSurfer.
منابع مشابه
Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملThe feasibility of atlas‐based automatic segmentation of MRI for H&N radiotherapy planning
Atlas-based autosegmentation is an established tool for segmenting structures for CT-planned head and neck radiotherapy. MRI is being increasingly integrated into the planning process. The aim of this study is to assess the feasibility of MRI-based, atlas-based autosegmentation for organs at risk (OAR) and lymph node levels, and to compare the segmentation accuracy with CT-based autosegmentatio...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملSegmentation of Magnetic Resonance Brain Imaging Based on Graph Theory
Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 113 شماره
صفحات -
تاریخ انتشار 2015